

IHSV Integrated ac servo motor manual

Introduction

All contents of this manual, copyright owned by Shenzhen Just Motion Control Electromechanics Co.,Ltd., shall not be arbitrarily reproduced, copied, transcribed without permission. This manual does not contain any forms of guarantee,

Shenzhen Just Motion Control Electro-mechanics Co., Ltd

TEL:+86-0755-26509689

FAX:+86-0755-26509289

www.jmc-motion.com

Email: info@jmc-motion.com

Address: Floor2, Building A, Hongwei Industrial Zone No.6,

Liuxian 3rd Road, Shenzhen. China

standpoint statement, or hint. Shenzhen Just Motion Control and its employees will not take any responsibility for the loss caused by direct or indirect leaking information mentioned in this Manual. In addition, products information in this manual is for reference only, we are sorry for not offering update if it is improved.

Shenzhen Just Motion Control Electro-mechanics Co., Ltd

Version	Editor	Verifier
V2.0	R&D	R&D

Contents

1. Overview	.错误!	未定义书统	签。
2. Features			
3. Technical index			5
(D. 4. L. 4. L. 4			,

4.1	ALM signal output ports	6
4.2	Control Signal Input Ports	7
4.3	Power Interface Ports	8
5.	Parameter and function	8
5.1	List of parameters	8
5.2	Parameter parsing instructions	16
5.2.	1 P00-xx Motor and Drive Parameters	16
5.2.	2 P01-xx Main control parameters	18
5.2.	3 P02-xx Gain parameters	21
5.2.	4 P03-xx Position parameters	267
5.2.:	5 P04-xx Speed parameter	27
5.2.	6 P05-xx 8/5000Torque parameters	28
5.2.	7 P06-xx I/O parameter	280
5.2.	8 P08-xx Advanced function parameters	30
5.3	List of monitored items	31
6.	Fault Analysis and Processing	33
6.1	Fault Alarm Information Form	33
6.2	Causes and Disposal of Fault Alarm	36
7.	Control signal wiring	40
7.1	Control signal single terminal coanode wiring	390
7.2	Control signal single terminal cocathode wiring	41
7.3	Control signal differential wiring mode	42
7.4	232Serial communication wiring	43
7.5	Control signal timing diagram	44
7.6	Chart of torque characteristic of servo motor speed	45
8. S	ubdivision code switch settings	50
8.1	Subdivision settings	50
8.2	Enter Edge Settings	51
8.3	logical Direction Settings	51

9. Error alarm and LED light flicker times	
10. Installation dimensions(mm)	52
11. Frequently Asked Questions and Fault Analysis	56
11.1 Power's not on.	56
11.2Turn on the red light.	56
11.3 Run, turn a small angle, turn on the red light	56
11.4 After the pulse is entered, it does not rotate	56
12. IHSV42/57/60/86-XX Parameter modification step	57

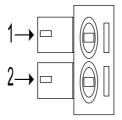
1. Overview

IHSV42/57/60 / 86-XX Integrated AC servo drive motor integrates AC servo drive into servo motor. The two are perfectly integrated and use vector control designed and produced by DSP. It has the characteristics of low cost, full closed-loop, full number, low heat, small vibration and fast response. Includes three adjustable feedback loop controls(position loop, speed loop, and current loop). Performance stability, is a very high cost performance of sports control products.

2. Features

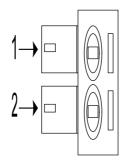
- 2.1 Multiple pulse input modes Pulse + Direction
- 2.2 Optically coupled isolation servo reset input interface ERC
- 2.3 Current loop bandwidth: (-3 dB) 2 KHz(typical value)

- 2.4 Speed loop bandwidth: 500 Hz(typical value)
- 2.5 Position loop bandwidth: 200 Hz(typical value)
- 2.6 Motor end orthogonal encoder input interface: differential input(26LS32)
- 2.7 Download parameters via PC or text display with RS232C interface
- 2.8 Users can choose to subdivide through external dialing switches, or they can use software Define subdivision
- 2.9 Overflow, I2T, Overpressure, Speeding, Ultra-Poor Protection
- 2.10 A green light indicates operation, a red light indicates protection or offline

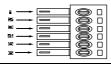

3. Technological Index

		42base		57base			60base		86base		
		52	78	100	140	180	200	400			
Input voltage (VDC)	W	W	W	W	W	W	W	440	660	
									W	W	
		24	·V		36V		36V	48V	48V	72V	
Max pulse frequ	iency	200k	200K								
Default commun	nication rate	9.6Kbps (Additional interface required)									
Protection		►Overload I2t Current Action Value 300 % 3S									
	Environment	Avoid dust, oil fog and corrosive gases									
Environment	Working	0~+70°C									
temperature											
Specifications	-20°C~+80°C										
	temperature										

Humidity	40~90%RH
Cooling	Natural cooling or forced air cooling
method	


4. Ports Introduction

4.1 ALM signal output ports


Symbol	Name	Instruction
ALM-	Alarm output -	1 6 11
ALM+	Alarm output +	5—15
PED-	Arrive position output-	
PED+	Arrive position output+	

4.2 Control Signal Input Ports

Symbol	Function	Remark
	Enabling signal: This input signal is used to enable or	
ENA-	prohibit; In addition, it can be used to clear the drive alarm.	Low 0 ∼ 0.5 V valid
	When ENA + is connected to +5 V, ENA-is connected to	
	low power, the drive will cut off the current of each phase	
	of the motor so that the motor is in a free state, where the	
	pulse is not responded and the alarm can be cleared; When	
ENA+	this function is not required, the energy signal end is	High 4 ∼ 5V valid
	suspended.	
DIR-	Direction signal: high/low level signal. In order to ensure	Low 0 ∼ 0.5 V valid
	the reliable direction change of the motor, the direction	
DIR+	signal should be established before the pulse signal at least	High 4 ∼ 5V valid
DIK	6us.	riigii 4 ~ 5 v Vaiid
PUL-	Pulse control signal: Pulse rising edge is effective. In order	Low 0 ∼ 0.5 V valid
PUL+	to reliably respond to pulse signal, the pulse width should	High 4 ∼ 5V valid
	be greater than 2.5 us.	ingn + 2 y vanu

4.3 Power port

Identification	Symbol	Name	Remark
D	DC+	Power+	20VDC-80VDC(sel
	DC+	Power+	ect voltage and
			power supply
Power input terminal	GND		according to the
terminar		Power -	corresponding type
			of motor's technical
			index)

5. Parameters and function

5.1 Parameters list

P00-xx Represents motor and drive parameters

P01-xx Main control parameters

P02-xx Represents the gain class parameter

P03-xx Represents the position parameter

P04-xx Represents the speed parameter

P05-xx Represent the torque speed

P06-xx Represent I/O parameter

P08-xx Represents an advanced function parameter

Model	Para meter code	Name	Setting range	Factor y setting	Unit	Setting way	Effective time
	P00-0 0	Motor No.	0-65535			Stop Setting	Re-power
	P00-0	Motor rated speed	1-6000		rpm	Stop Setting	Re-power
	P00-0 2	Motor rated torque	0.01-655.35		N.M	Stop Setting	Re-power
	P00-0 3	Motor rated current	0.01-655.35		A	Stop Setting	Re-power
	P00-0 4	Motor inertia	0.01-655.35		kg.cm ²	Stop Setting	Re-power
Motor	P00-0 5	Pole number of motor	1-31		Opposit e pole	Stop Setting	Re-power
and driver parame ters	P00-1 0	Number of lines in incremental encoder	0-65535			Stop Setting	Re-power
Motor	P00-1	Incremental encoder Z pulse angle	0-65535			Stop Setting	Re-power
and driver	P00-1 2	Initial angle of rotor 1	0-360		1 degree	Stop Setting	Re-power
parame ters	P00-1 3	Initial angle of rotor2	0-360		1degree	Stop Setting	Re-power
	P00-1 4	Initial angle of rotor3	0-360		1degree	Stop Setting	Re-power
	P00-1 5	Initial angle of rotor4	0-360		1degree	Stop Setting	Re-power

	P00-1 6	Initial angle of rotor5	0-360		1 degree	Stop Setting	Re-power
	P00-1 7	Initial angle of rotor6	0-360		1 degree	Stop Setting	Re-power
	P00-2	RS232 communicate baud rate	0-3	2		Stop Setting	Re-power
	P00-2 3	Slave address	0-255	1		Stop Setting	Re-power
	P00-2 4	Modbus =communicate baud rate	0-7	7		Stop Setting	Re-power
	P00-2 5	Check mode	0-3	1		Stop Setting	Re-power
	P00-2 6	ModbusComm unication response delay	0-100	0	1ms	Stop Setting	Re-power
	P00-4 2	Overvoltage protection threshold	0-300	0	1V	Stop Setting	Re-power
	P01-0	Control mode setting	0-2	0		Stop Setting	Effective immediately
Main control parame ters	P01-0 2	Real time automatic adjustment mode	0-2	1		Run Setting s	Effective immediately
	P01-0 3	Real time automatic adjustment of rigidity setting	0-31	13		Run Setting s	Effective immediately
	P01-0	The ratio of	0-100.00	1	1times	Run	Effective

	4	moment of				Setting	immediately
		inertia				S	
	P01-3 0	Brake command - servo OFF delay time (brake open delay)	0-255	100	1ms	Run Setting s	Effective immediately
	P01-3	Speed limit value of brake command output	0-3000	100	1rpm	Run Setting s	Effective immediately
	P01-3 2	Servo OFF brake command waiting time	0-255	100	1ms	Run Setting s	Effective immediately
	P02-0 0	Position control gain 1	0-3000.0	48.0	1/S	Run Setting s	Effective immediately
Gain parame	P02-0	Position control gain 2	0-3000.0	57.0	1/S	Run Setting s	Effective immediately
ter	P02-0 3	Speed feedforward gain	0-100.0	30.0	1.0%	Run Setting s	Effective immediately
	P02-0 4	Speed feedforward smoothing constant	0-64.00	0.5	1ms	Run Setting s	Effective immediately
	P02-1 0	Speed proportional	1.0-2000.0	27.0	1Hz	Run Setting	Effective immediately

Gain		aoin1					
		gain1				S	
parame							
ter	P02-11	Speed integral constant 1	0.1-1000.0	10.0	1ms	Run Setting	Effective immediately
	P02-12	Pseudo differential feedforward control coefficient1	0-100.0	100.0	1.0%	Run Setting s	Effective immediately
	P02-13	Speed proportional gain 2	1.0-2000.0	27.0	1Hz	Run Setting	Effective immediately
	P02-14	Velocity integral constant2	0.1-1000.0	1000.0	1ms	Run Setting s	Effective immediately
	P02-15	Pseudo differential feedforward control coefficient2	0-100.0	100.0	1.0%	Run Setting s	Effective immediately
	P02-19	Torque feedforward gain	0-30000	0	1.0%	Run Setting s	Effective immediately
	P02-20	Torque feed forward smoothing constant	0-64.00	0.8	1ms	Run Setting s	Effective immediately
	P02-30	Gain switching mode	0-10	0		Run Setting	Effective immediately

						s	
	P02-31	Gain switching level	0-20000	800		Run Setting s	Effective immediately
	P02-32	Gain switching delay	0-20000	100		Run Setting	Effective immediately
	P02-33	Gain switching delay	0-1000.0	10.0	1ms	Run Setting s	Effective immediately
	P02-34	Position gain switching time	0-1000.0	10.0	1ms	Run Setting s	Effective immediately
	P02-41	Mode switch level	0-20000	10000		Run Setting s	Effective immediately
	P02-50	The torque instruction is added	-100.0-100.0	0	1.0%	Run Setting s	Effective immediately
	P02-51	Forward torque compensation	-100.0-100.0	0	1.0%	Run Setting s	Effective immediately
	P02-52	Reverse torque compensation	-100.0-100.0	0	1.0%	Run Setting s	Effective immediately
	P03-00	Location command source	0-1	0		Stop Setting	Effective immediately
locatio n	P03-03	The command pulse is reversed	0-1	0		Stop Setting	Effective immediately

param eter	P03-04	Position pulse filtering	0-3	2		Run Settin gs	Effective immediately
	P03-05	Positioning completes the judgment condition	0-2	1		Run Settin gs	Effective immediately
	P03-06	Location Completion range	0-65535	30	Encoder unit	Run Settin gs	Effective immediately
	P03-09	Number of command pulses for one motor rotation	0-65535	4000	Pulse	Run Settin gs	Re-power
	P03-10	Molecular of electronic gear	1-65535	4000		Run Settin gs	Re-power
	P03-11	The denominator of electronic gear	1-65535	4000		Run Settin gs	Re-power
	P03-15	Position deviation too large setting	0-65535	0	Instructi on unit*10	Run Settin gs	Effective immediately
	P03-16	Position instruction smoothing filter time constant	0-1000.0	0	1ms	Run Settin gs	Effective immediately
speed	P04-00	Speed command	0-1	1		Stop Settin	Effective immediately

param		source				g	
eter	P04-02	Digital speed given value	-6000—6000	0	1rpm	Run Settin gs	Effective immediately
	P04-05	Speed alarm value	0-6500	6400	1rpm	Run Settin gs	Effective immediately
	P04-06	Forward speed limit	0-6000	5000	1rpm	Run Settin gs	Effective immediately
	P04-07	Reverse speed limit	0-6000	-5000	1rpm	Run Settin gs	Effective immediately
	P04-10	Zero speed detection value	0-200.0	40	1rpm	Run Settin gs	Effective immediately
	P04-14	Speed time	0-10000	500	1ms/100	Run Settin gs	Effective immediately
	P04-15	Deceleration time	0-10000	500	0rpm	Run Settin gs	Effective immediately
torque	P05-10	Internal positive torque limit value	0-300.0	200.0	1.0%	Run Settin gs	Effective immediately
param eter	P05-11	Internal torque limit value	0-300.0	200.0	1.0%	Run Settin gs	Effective immediately
I/O Param eter	P06-00	Enable input port effective level	0-4	1		Run Settin gs	Re-power

	P06-20	Alarm output port effective level	0-1	1		Run Settin gs	Re-power
	P06-22	Output port in place valid level	0/1	1		Run Settin gs	Re-power
	P08-19	low pass filter constant of Feedback speed	0-25.00	0.8	1ms	Run Settin gs	Effective immediately
Advan ced functi	P08-20	Torque command filter constant	0-25.00	0.84	1ms	Run Settin gs	Effective immediately
on param eters	P08-25	Disturbing torque compensation gain	0-100.0	0	%	Run Settin gs	Effective immediately
	P08-26	Disturbing torque filter time constant	0-25.00	0.8	1ms	Run Settin gs	Effective immediately

5.2 Description of parameter analysis

5.2.1 P00-xx Motor and driver parameters

Parame ter code	Name	Instruction
P00-00	Motor number	Factory set, no need to set 0: P0-01 to P0-17 play a role
P00-01	Motor rated speed	Setting range: 1-6000, Unit: rpm Factory setting has done, no need to set
P00-02	Motor rated torque	Setting range: 0.01-655.35, Unit: N.M Setting according to the matched motor, factory setting has done
P00-03	Rated current of	Setting range: 0.01-655.35, unit: A

	motor	According to the motor settings, the factory has been set up.
700.04	Motor moment	Setting range: 0.01-655.35, unit: kg.cm ²
P00-04	of inertia	Setting according to the matched motor , factory setting has done
P00-05	Pole number of motor	Set range: 1-31, unit: opposite pole ,Setting according to the matched motor , factory setting has done
P00-10	Incremental encoder number	Setting according to the matched motor , factory setting has done
P00-11	Incremental encoder Z pulse Angle	Setting according to the matched motor , factory setting has done
P00-12	Initial rotor Angle 1	Setting according to the matched motor, factory setting has done
P00-13	Initial rotor Angle 2	Setting according to the matched motor, factory setting has done
P00-14	Initial rotor Angle 3	Setting according to the matched motor, factory setting has done
P00-15	Initial rotor Angle 4	Setting according to the matched motor, factory setting has done
P00-16	Initial rotor Angle 5	Setting according to the matched motor, factory setting has done
P00-17	Initial rotor Angle 6	Setting according to the matched motor, factory setting has done
P00-21	RS232Communi cation baud rate selection	Setting range: 0-3 Select the baud rate when communicating with PC0: 9600 1: 19200 2: 57600 3: 115200
P00-23	Slave station address	Setting range: 0-255, the default value is 1 Set up according to equipment requirements

		Setting range: 0-7, The default value is 2
		0:2400
		1:4800
	Modbus	2:9600
P00-24	Communication	3:19200
	baud rate	4:38400
		5:57600
		6:115200
		7:25600
		Setting range: 0-3, default value: 1
		0: no check, two stop bits
P00-25	Check way	1: even check, 1 stop bit
		2: odd check, 1 stop bit
		3: no check, 1 stop bit
	Modbus	
P00-26	Communication	Setting range: 0-100, Unit ms
	response delay	
	Overvoltage	
P00-42	protection	Setting range: 0-300, unit V
	threshold	

5.2.2 P01-xx Master control parameter

Parame		
ter	name	Instruction
code		
		Setting range: 0-6
DO1 01	Control mode	0: position control mode
P01-01	setting	1: speed control mode
		2: torque control mode
D01 02	Real time	332/5000
P01-02	automatic	Setting range: 0-2

	adjustment mode	0: manually adjust the rigidity.
		1: standard mode automatically adjusts rigidity. In this mode,
		parameters p02-00, p02-01, p02-10, p02-11, p02-13, p02-14,
		and p08-20 will be set automatically according to the rigidity
		level set by p01-03. Manual adjustment of these parameters will
		not work. The following parameters are set by the user:
		P02-03 (speed feed-forward gain), p02-04 (speed feed-forward
		smoothing constant).
		2: positioning mode automatically adjusts rigidity. In this mode,
		parameters p02-00, p02-01, p02-10, p02-11, p02-13, p02-14,
		and p08-20 will be set automatically according to the rigidity
		level set by p01-03. Manual adjustment of these parameters will
		not work. The following parameters will be fixed and cannot be
		changed:
		P02-03 (speed feedforward gain) : 30.0%
		P02-04 (speed feed-forward smoothing constant): 0.50
	Adjust the rigid	Setting range: 0-31
P01-03	setting	Built-in 32 gain class parameters, when p01-02 set to 1, or 2.
101-03	automatically in	Can be called directly according to the actual situation, the
	real time	larger the set value, the stronger the rigidity.
		Setting range: 0-100, unit: times
		Set the load inertia ratio of the corresponding motor. The setting
	Moment of inertia	method is as follows:
P01-04	ratio	P01-04= load inertia/motor moment of inertia
	Tutto	This inertia ratio can use the value identified by AF-J-L
		automatic inertia identification and write the value into the
		parameter
	Brake command -	
	servo OFF delay	Setting range: 0-255, unit: ms
P01-30	time (brake	When open the Enable: after the enable instruction is executed,
	opening delay)	the drive will receive the position instruction after the time of
	<i>1 0</i>	p01-30.

		When turn off the enable when the motor is in a state of rest, the time after the energy command is executed and the holding gate is closed until the motor becomes non-energized.
P01-31	Speed limit value of brake instruction output	Setting range: 0-3000 Unit RPM When the motor is in a state of rotation, the motor speed threshold when the brake output is valid. If it is lower than this threshold, the brake output command is effective; otherwise, it will wait for p01-32 time before the gate output command is effective.
P01-32	Servo OFF- lock instruction wait time	Setting range: 0-255, unit: ms When the motor is in a state of rotation, the maximum waiting time for the output of the holding gate.

5.2.3 P02-xx Gain class parameter

Param eter code	Name	Instruction
P02-00	Position control gain 1	Setting range: 0-3000.0, unit: 1/S As for the proportional gain of the position loop regulator, the larger the parameter value, the higher the gain ratio, the higher the stiffness, the smaller the position tracking error and the faster the response. However, too large parameters can easily cause vibration and overshoot. This parameter is for the steady-state response.
P02-01	Position control gain 2	Setting range: 0-3000.0, unit: 1/S As for the proportional gain of the position loop regulator, the larger the parameter value, the higher the gain ratio, the higher the stiffness, the smaller the position tracking error and the faster the response. However, too large parameters can easily cause vibration and overshoot. This parameter is for dynamic response.
P02-03	Speed feed	Setting range: 0-100.0, unit: 1.0%

	forward gain	The feed forward gain of the speed loop, the larger the
	101 ward gain	parameter value, the smaller the system position tracking error,
		and the faster the response. However, if the feedforward gain is
		too large, the position loop of the system will be unstable, which
	C 1	will easily cause overshoot and shock.
	Speed	Setting range: 0-64.00, unit: ms
P02-04	feedforward	This parameter is used to set the speed loop feed-forward filter
	smoothing	time constant. The larger the value, the larger the filtering effect,
	constant	but at the same time the phase lag increases.
		Setting range: 1.00-2000.0, unit: Hz
		The larger the speed proportional gain, the larger the servo
	Speed	stiffness, the faster the speed response, but too large is easy to
P02-10	proportional gain	generate vibration and noise.
	1	This parameter value is increased as far as possible under the
		condition that the system is not oscillating.
		This parameter is for static responses.
		Setting range: 1.0-1000.0, unit: ms
		Speed regulator integral time constant. The smaller the setting
	G 1	value is, the faster the integral velocity is and the higher the
P02-11	Speed integral	stiffness is.
	constant 1	This parameter value is minimized when the system does not
		oscillate.
		This parameter is for the steady-state response.
		Setting range: 0-100.0, unit: 1.0%
		When the speed loop is set to 100.0%, PI control is adopted and
	Pseudo	the dynamic response is fast. When set to 0, the velocity loop
	differential feed	integral has obvious effect and can filter low frequency
P02-12	forward control	interference, but the dynamic response is slow.
	factor 1	By adjusting this coefficient, the speed loop can have better
		dynamic response and increase the resistance of low frequency
		interference.
L	l	

P02-13	Speed proportional gain 2	Setting range: 1.00-2000.0, unit: Hz The larger the speed proportional gain, the larger the servo stiffness, the faster the speed response, but too large is easy to generate vibration and noise. This parameter value is increased as far as possible under the condition that the system is not oscillating. This parameter is for dynamic response.
P02-14	The speed integral constant 2	Setting range: 1.0-1000.0, unit: ms Speed regulator integral time constant. The smaller the setting value is, the faster the integral velocity is and the higher the stiffness is. This parameter value is minimized when the system does not oscillate. This parameter is for dynamic response.
P02-15	Pseudo differential feedforward control coefficient 2	Setting range: 0-100.0, unit: 1.0% When the speed loop is set to 100.0%, PI control is adopted and the dynamic response is fast. When set to 0, the velocity loop integral has obvious effect and can filter low frequency interference, but the dynamic response is slow. By adjusting this coefficient, the speed loop can have better dynamic response and increase the resistance of low frequency interference.
P02-19	Torque feed forward gain	Setting range: 0-30000, unit: 1.0% Set the weighting value of current loop feedforward. The parameter adds the current loop after weighting the differential of the speed instruction
P02-20	Torque feed forward smoothing constant	Setting range: 0-64.00, unit: ms This parameter is used to set the torque feed forward filter time constant.

		Setting	range: 0-10	
		•	•	d gain switching conditions
		Set the I	inst and secon	d gain switching conditions
		Valu	Switching	Remark
		e	conditions	
		0	Fixed for	P02-00, P02-10, P02-11, P02-12
			the first	102 00 102 10 102 11 102 12
			gain	
		1	Fixed for	P02-01 \ P02-13 \ P02-14 \ P02-15
			the second	
			gain	
		2	use	Need to set the DI port to 9 (gain
				switching input)
	Cain assitabina		DI input	
P02-30	Gain switching mode		switching	Invalid: first gain Effective: second
				gain
		3	Torque	Switch to second gain when the
			command	torque instruction is greater than the
			is big	threshold(determined by P02-31 and
				P02-32). Less than the threshold and
				when it exceeds the P02-33 delay
				setting, switch to the first gain.
		4	The speed	Switches to the second gain when the
			instruction	speed instruction changes more than
			changes a	the threshold(determined by P02-31
			lot.	and P02-32). Less than the threshold
				and when it exceeds the P02-33 delay
			_	setting, switch to the first gain.
		5	peed	Switch to second gain when the speed
			command	instruction is greater than the

	Ι.,	1 11/1 11 200 01 1
	is large.	threshold(determined by P02-31 and
		P02-32). Switch to first gain when
		less than threshold, while exceeding
		P02-33 latency settings
6	Large	Switch to second gain when the
	position	position deviation is greater than the
	deviation	threshold(determined by P02-31 and
		P02-32). Less than the threshold and
		when it exceeds the P02-33 delay
		setting, switch to the first gain.
7	Have	Switch to second gain when there is a
	Location	position command. The position
	command.	command ends and when it exceeds
		the P02-33 delay setting, switch to the
		first gain.
8	Location	Switch to second gain when
	incomplet	positioning is not complete. Location
	e.	complete, while exceeding the P02-33
		delay setting, switch to first gain
9	Real	Switches to the second gain when the
	speed is	actual speed is greater than the
	big	threshold(determined by P02-31 and
		P02-32). Less than the threshold and
		when it exceeds the P02-33 delay
		setting, switch to the first gain.
10	Location	Switch to second gain when there is a
	command	position command. There is no
	+ actual	position instruction and the actual
	speed	speed is less than the
		threshold(determined by P02-31 and
		P02-32), and when the P02-33 delay

		setting is exceeded, switch to the first
		gain.
		Set range: 0-20000
		Judgment threshold for gain switching.
P02-31	Gain switching level	Torque unit: 1000 bit = 25 % rated torque
102 31	Can switching level	Speed unit: 1000 bit = 200 rpm
		Location Unit: 131072 bit per lap
		Set range: 0-20000
		The hysteresis level during gain switching
P02-32	Gain switching	Torque unit: 1000 bit = 25 % rated torque
102 32	hysteresis	Speed unit: 1000 bit = 200 rpm
		Location Unit: 131072 bit per lap
		Set range: 0-1000 .0, unit: MS
P02-33	Gain switching	When switching from the second gain to the first gain, the time
	delay	from the trigger condition to the actual switch is satisfied.
	Position gain switching time	Set range: 0-1000.0, Unit: ms
P02-34		Position Control Gain 1 Smooth Switch to Position Control Gain
		2
	Mode Switch Level	Set range: 0-20000
		Set the threshold for switching.
P02-41		Torque unit: 1000 bit = 25 % rated torque
		Speed unit: 1000 bit = 200 rpm
		Location Unit: 131072 bit per lap
	T	Set range: -100.0-100, Unit 1.0 %
D02.50	Torque	Location control mode is valid. This value is superimposed on a
P02-50	instruction plus	given torque value and is used for static torque compensation of
	calculation	the vertical axis.
	Forward torque	Set range: -100.0-100 .,Unit1.0 %
P02-51	Forward torque compensation	Location control mode is valid. Used to compensate for forward
		static friction
P02-52	Reverse torque	Set range: -100.0-100 .0, Unit 1.0 %

compensation	Location control mode is valid. Used to compensate for reverse
	static friction

5.2.4 P03-xx Position parameters

	5.2.4 F05-XX F08tt0ff parameters			
Param eter code	name	Instruction		
P03-0	Location	0: Pulse command		
0	Command Source	1: Numbers given, used for communication control.		
P03-0 3	Inverse command pulse	Used to adjust pulse count direction 0: Normal. 1: Reverse direction		
P03-0 4	Location Pulse Filter Settings	Setting range: 0-3, UNIT: us 0: 0.1us. 1: 0.4us 2: 0.8us. 3: 1.6us		
P03-0 5	Location complete judgment conditions	0: Output when position deviation is less than P03-06 setting 1: The position is given and the position deviation is less than the P03-06 setting output 2: Location given(filtered), and position deviation less than P03-06 set output		
P03-0 6	Location complete range	Set range: 0-65535, units: encoder units Use to set the threshold value for positioning completion output. Using the incremental encoder motor, the number of encoder lines * 4 per loop is calculated.		
P03-0 9	Number of command pulses for 1 motor rotation	Set range: 0-65535 Used to set the number of command pulses for the motor to rotate around. When this parameter is set to 0, the P03-10 and P03-11 parameters are valid.		

P03-1 0	Molecular of electronic gear 1 The denominator of electronic gear 1	The formula for calculating the electronic gear ratio of incremental $\overline{Denominator} = \frac{C \times 4}{P}$ incremental $\overline{Denominator} = \frac{C \times 4}{P}$ eg: Encoder linequantity 2500; Input puls equantity perrotation 3200; Electroni $\overline{Motors4} = \frac{C : J.inbede coder}{2500 \times 4} = \frac{10000}{3200} = \frac{25}{8}$ Remark
P03-1 5	Position deviation too large setting	Setting range: 0-65535, unit: instruction unit *10 Set the number of pulses that are allowed to deviate it will alarm if beyond the set value. Example: set value is 20. When the following deviation exceeds 20*10, the driver will alarm AL.501 (the position deviation is too large).
P03-1	Position command smoothing constant	Setting range: 1000, unit: ms Set the time constant of the position instruction smoothing filter

5.2.5 P04-xx Speed parameter

Param	The speed parameter	
eter	name	Instruction
code		
		0: external analog instruction
P04-0	Speed command	1: digital instruction (parameter setting)
0	source	2: digital instruction (communication)
		3: internal multiple sets of instructions
P04-0	Digital anged	Set range: -6000-6000, units: rpm
2	Digital speed given value	When P04-00 is set to 1, P04-02 is the speed control setting
2	given value	value
P04-0	Overspeed alarm	Set range: 0-6500, unit: rpm
5	value	Set allowed maximum speed, exceeding set value will A.420

		speed alarm
P04-0	Forward speed	Set range: 0-6000 in rpm
6	limit	Limit motor forward speed
P04-0	Reverse speed	Set range: 0-6000 in rpm
7	limit	Limit motor reverse speed
		Set range: 0-200 .0 in rpm
P04-1	Zero speed	Set the zero speed exit limit, the motor speed below the
0	detection value	threshold can output the "motor zero speed output" signal
		through the output port
P04-1	1	Setting range: 0-10000, unit: 1ms/1000rpm
4	acceleration time	Set the acceleration for speed control
P04-1	Deceleration times	Setting range: 0-10000, unit: 1ms/1000rpm
5	Deceleration time	Set the deceleration speed for speed control

5.2.6 P05-xx Torque parameters

Para		
meter	name	Instruction
code		
		Setting range: 0-300.0, unit: 1.0%
		The forward output of the motor is limited, with 100 denoting
DO5 1	Totamed a sities	1 times torque and 300 denoting 3 times torque
P05-1	Internal positive	
0	torque limit value	When the torque output reaches the limit value, the output
		signal can be detected by the torque limit output on the DO
		port
		Setting range: 0-300.0, unit: 1.0%
		Limited motor output, 100 represents 1 times torque, 300
P05-1	Internal torque limit value	represents 3 times torque
1		When the torque output reaches the limit value, the output
		signal can be detected by the torque limit output on the DO
		port

5.2.7 P06-xx I/O Parameter

Param eter code	Name	Instruction
P06-0 0	Enable the output port to be effectively level	Setting range: 0-1, factory setting: 1
P06-2 0	Alarm output port effective level	Setting range: 0-1, factory setting: 1
P06-2 2	Put in place the output port effective level	Setting range: 0-1, factory setting: 1

5.2.8 P08-xx Advanced function parameters

Para meter code	Name	Instruction	
P08-1 9	Feedback speed low-pass filtering constant	Setting range: 0-25.00, unit: ms The feedback speed low-pass filter time constant can be set to large when the motor is roaring during operation.	
P08-2 0	Torque command filter constant	Setting range: 0-25.00, unit: ms Torque instruction filter time constant, when the motor running in the squealing, the value can be appropriately set to large.	
P08-2 5	Disturbance torque compensation gain	Setting range: 0-100.0 Gain coefficient of perturbation torque observation. The higher the value, the stronger the anti-disturbance torque capacity, but the motion noise may also increase.	
P08-2 6	The perturbation torque filter time constant	Setting range: 0-25.00, unit: ms The larger the value, the stronger the filtering effect, can inhibit the motion noise. However, the effect of disturbanc torque is affected by the phase delay.	

5.3 Monitor project list

displaying Display item	Description	Unit
-------------------------	-------------	------

serial				
number				
d00.C.PU	The sum of the position commands	This parameter can monitor the number of pulses sent by the user to the servo driver, so as to confirm whether any pulse loss occurs	Instruction unit	
d01.F.PU	The sum of the position feedback of the servo motor feedback. The unit is same as the user input unit		Instruction unit	
d02.E.PU	This parameter can monitor the pulse number Number of position of position delay in the operation of the servo		Instruction unit	
d03.C.PE	The position is given the sum of the pulses / Unit: when using absolute value motor, calculate at 131072bit for each turn. With the incremental encoder motor, the number of encoder lines per lap is *4.		Encoder unit/ Instruction unit	
d04.F.PE	Position feedback pulse sum	This parameter can monitor the pulse number of the servo motor feedback. Unit: when using absolute value motor, calculate at 131072bit for each turn. With the incremental encoder motor, the number of encoder lines per lap is *4.	Encoder unit / Instruction unit	
d05.E.PE	Position deviation pulse number /Gantry pulse deviation	This parameter can monitor the pulse number of position delay in the operation of the servo system. Unit: when using absolute value motor, calculate at 131072bit for each turn. With the incremental encoder motor, the number of	Encoder unit/ Instruction unit	

		encoder lines per lap is *4.	
d06.C.Fr	Pulse command input frequency	This parameter can monitor the input frequency of external pulse instruction	KPPS
d07.C.SP	Speed control instruction		rpm
d08.F.SP	Motor speed	This parameter can monitor the speed when the servo motor is running	rpm
d09. C.tQ	Torque command	This parameter can monitor the torque when the servo motor is running	%
d10. F.tQ	Torque feedback value	This parameter can monitor the torque feedback when the servo motor is running	%
d11.AG.L	The average torque	This parameter can monitor the servo motor's average torque for the past 10 seconds	%
d12.PE.L	d12.PE.L Peak torque This parameter can monitor the peak torque of the servo motor after power on		%
d13.oL	Overload load rate	This parameter can monitor the load occupancy of the servo motor for the past 10 seconds	%
d14.rG Regenerative load factor This parameter can monitor the load rate of regenerative resistance		%	
d16.I.Io	Input IO state	This parameter can monitor the input port state of CN1. The upper vertical bar represents the high level (optocoupler cutoff), and the lower horizontal bar represents the	
d17.o.Io	Output IO state	This parameter can monitor the output port state of CN1. The upper vertical bar represents the optical coupling lead, while the	

	1	T		
		lower vertical bar represents the optical		
		coupling cut-off. The corresponding relation		
		with the output port is that the operation		
		panel corresponds to do1-do3 from right to		
		left		
		This parameter can monitor the motor		
d18.AnG	Machine Angle	mechanical Angle, rotation 1 turn is 360	0.1degree	
		degrees		
	N	This parameter can monitor the phase		
d19.HAL	Motor UVW phase	sequence position of the incremental encoder		
	sequence	motor		
	Absolute value	This parameter can monitor the feedback		
d20.ASS	encoder single coil	value of the absolute encoder, rotating one	0-0xFFFF	
	number	circle as 0xffff		
	10/5000	This parameter can be used to monitor the		
	Absolute value	number of turns of the absolute multi-coil		
d21.ASH	encoder multi-turn	encoder motor		
	numerical value			
		This parameter can monitor the real-time		
d22.J-L	Inertia ratio	inertia of the motor load	%	
	Main circuit	This parameter can monitor the voltage value		
d23.dcp	voltage (dc value)	of the main circuit	V	
		This parameter can monitor drive	degree	
d24.Ath	Driver temperature	temperature	centigrade	
	Cumulative	This parameter can monitor the drive run	_	
d25.tiE	running time	time in seconds	Second	
	Resonance	This parameter can monitor the resonant		
d26.1.Fr	frequency 1	frequency 1	Hz	
	Resonance	This parameter can monitor the resonant		
d28.2.Fr	frequency 2	frequency 2	Hz	
d30.Ai1	Analog quantity	This parameter can monitor the speed loop's	0.01V	
450.7111	1 maios quantity	This parameter can monitor the speed 100p s	0.01 7	

	command 1 input voltage (V_REF)	analog instruction (v-ref) input voltage value.	
d31.Ai2	Analog quantity command 2 input	This parameter can monitor the input voltage value of the analog instruction (t-ref) of the	0.01V
	voltage (T_REF)	torque loop.	

6 、 Fault analysis and treatment

6.1 Fault alarm information table

Alarm type	The serial number code	Alarm content	
	AL.051	EEPROM parameter anomaly	
	AL.052	Programmable logic configuration failures	
	AL.053	Initialization failed	
	AL.054	A system exception	
	AL.060	Product model selection fault	
	AL.061	Product matching fault	
	AL.062	Parameter storage failure	
	AL.063	Overcurrent detection	
A hardware	AL.064	The servo self - check found the output to ground short circuit fault	
failure	AL.066	Servo unit control power supply low	
	AL.070	AD sampling fault 1	
	AL.071	Current sampling fault	
	AL.100	Parameter combination anomaly	
	AL.101	AI setting fault	
	AL.102	DI distribution fault	
	AL.103	DO allocation fault	
	AL.105	Error setting of electronic gear	
	AL.106	Abnormal output setting of frequency division pulse	
	AL.110	The parameters should be reset	

	AL.120	Invalid alert for servon command
	AL.401	Under voltage
	AL.402	Over voltage
	AL.410	Overload (instantaneous maximum load)
	AL.411	Driver overload
	AL.412	Motor overload (maximum continuous load)
	AL.420	Over speed
	AL.421	Out of control check out
	AL.422	Speed fault
	AL.425	AI sampling voltage is too high
	AL.435	Impulse current limits resistance overload
	AL.436	DBoverload
	AL.440	Radiator overheating
	AL.441	Motor overheat fault
	AL.500	Frequency division pulse output overspeed
AL.501		Excessive deviation of position
AT 502		Full closed - loop encoder location and motor location
AL.502		deviation is too large
	AL.505	P command input pulse exception
	AL.550	Failure identification of inertia
	AL.551	Return to origin timeout fault
	AL.552	Angle to identify failed faults
	AL.600	Short circuit fault of encoder output power
	AL.610	Incremental decoder offline
Encoder	AL.611	Incremental encoder Z signal loss
fault	AL.620	Bus type encoder off line
	AL.621	Read/write motor encoder EEPROM parameter abnormal
	AL.622	Motor encoder EEPROM data verification error
	AL.900	Excessive deviation of position
Warning	AL.901	The position deviation of the servo ON is too large
	AL.910	Motor overload

AL.912	Driver overload
AL.941	Parameter changes that require reconnection
AL.942	Write EEPROM frequent warning
AL.943	Serial communication exception
AL.950	Overpass warning
AL.971	Undervoltage warning

6.2 Fault alarm reason and disposal

AL.051: EEPROMparameter anomaly

Fault alarm reason	Fault alarm check	Treatment measure
Server EEPROM data	Check the wiring	Correct wiring and recharge
exception		If always present, change the
		drive

AL.053: Failure to initialize

Fault alarm reason	Fault alarm check	Treatment measure
Main control failed to initiate	Check the wiring	If always present, change the
power on MCU	Back to electricity	drive

AL.063: Overcurrent detection

Fault alarm reason	Fault alarm check	Treatment measure
The power module of servo	Is there a short circuit in	Correct connection
unit has excessive current	U,V,W connection	If always present, change the
	Is there a short circuit	drive
	between B1 and B3	

AL.071: Current sampling fault

Fault alarm reason	Fault alarm check	Treatment measure
Abnormal sampling data of	Is the connection correct	Correct connection
current sensor		If always present, change the
		drive

AL.100: Parameter combination anomaly

Fault alarm reason	Fault alarm check	Treatment measure
Parameter setting error	Check the parameters set	Set the parameters correctly

	(p03-07)	If always occurs, do		
		parameter initialization		
AL.102: DIistribution of the fault				
Fault alarm reason	Fault alarm check	Treatment measure		
At least two input ports have	Check port input function to	Set the parameters correctly		
the same function selection	select parameters	The drive is reenergized		
AL.103: DO Distribution of the fault				
Fault alarm reason	Fault alarm check	Treatment measure		
At least two output ports have	Check port output function to	Set the parameters correctly		
the same function selection	select parameters	The drive is reenergized		
parameters				
AL.105: Electronic gear setting error				
Fault alarm reason	Fault alarm check	Treatment measure		
Error setting of electronic	Check the setting parameters	Set the electronic gear ratio		
gear ratio	of the electronic gear	correctly		
	ratio.P03-10,P03-11			
The output pulse of the gantry	Check the number of	Correctly set the number of		
is set too small	feedback pulses for one	feedback pulses for the		
	rotation of the gantry motor:	rotation of one function motor		
	p03-52 must be larger than	in Longmen.		
	128			
AL.110: The parameters shoul	d be reset	1		
Fault alarm reason	Fault alarm check	Treatment measure		
After setting the servo	Re-power the driver	Re-power the driver		
parameters, it needs to be				
reenergized to take effect				
AL.401: Under voltage				
Fault alarm reason	Fault alarm check	Treatment measure		
The input voltage of the main	Check whether the input	Ensure correct wiring and use		
circuit is lower than the rated	wiring of the main loop is	the correct voltage source or		
voltage or no input voltage	correct and what voltage is	series connection stabilizer		

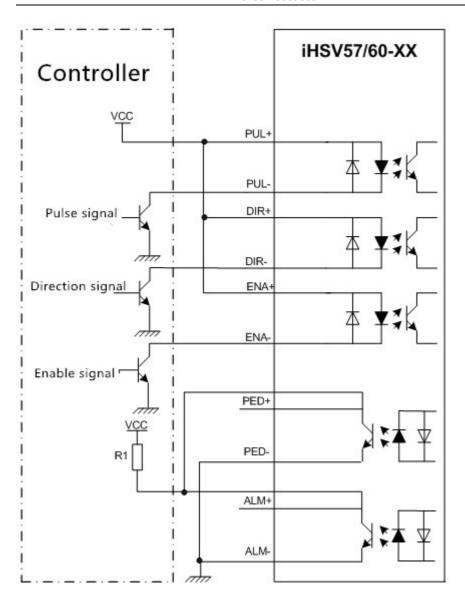
AL.402: Over voltage			
Fault alarm reason	Fault alarm check	Treatment measure	
The input voltage of the main	Use the voltmeter to test	Use the correct voltage source	
circuit is higher than the rated	whether the input voltage of	or serial voltage stabilizer	
voltage	the main circuit is correct		
Driver hardware fault	When it is determined that	Please send it back to the	
	the input voltage is correct,	dealer or the original factory	
	the alarm is still over voltage	for inspection	
The regenerative resistance is	Verify that p00-30 is set to 0	Correct setting and external	
not connected or the	or 1	regenerative resistance	
regenerative resistance is not			
selected correctly			
AL.410: Overload (instantaneo	ous maximum load)		
Fault alarm reason	Fault alarm check	Treatment measure	
The machine is stuck when	Check if mechanical	Adjust mechanical structure	
the motor starts	connections are stuck		
Driver hardware failure	Verify that the mechanical	Please send it back to the	
	part is normal and still alarm	dealer or the original factory	
		for inspection	
AL.412: Motor overload (cont	inuous maximum load)		
Fault alarm reason	Fault alarm check	Treatment measure	
Use continuously beyond the	It can be monitored through	Change the motor or reduce	
rated load of the driver	d13.ol in the monitoring	the load	
	mode		
Improper parameter setting of	1. Whether the mechanical	1. Adjust the control loop gain	
control system	system is installed	2. Set time for acceleration	
	2. The acceleration setting	and deceleration to slow down	
	constant is too fast		
	3. Whether the gain class		

	parameters are set correctly	
Motor wiring error	Check U, V, W connection	Correct connection
AL.420: Over speed		
Fault alarm cause	Fault alarm check	The disposal measures
The input speed command is	Use a signal detector to check	Adjust the frequency of the
too high	if the input signal is normal	input signal
Incorrect parameter setting for	Check whether p04-05 (speed	Set p04-05 correctly (alarm
overspeed determination	alarm value) is set properly	value for overspeed)
AL.440: Radiator overheating		
Fault alarm cause	Fault alarm check	treatment measure
Drive internal temperature	Check the heat dissipation	Improve the heat dissipation
higher than 95 °C	condition of the drive	condition of the drive. If the
		alarm occurs again, please
		send the drive back to the
		original factory for inspection
AL.501: Position error is too b	ig	T
Fault alarm reason	Fault alarm check	The disposal measures
The location deviation is too	Confirm the parameter setting	Increase the p03-15 (position
large and the parameter	of p03-15 (location deviation	deviation is too large) setting
setting is too small	is too large)	value
The gain is set too small	Verify that the gain class	Reset the gain class
	parameters are set properly	parameters correctly
Internal torque limit setting is	Confirm the internal torque	Adjust the internal torque
too small	limit value	limit value correctly
Excessive external load	Check external load	Reduce load or replace power
		motor
AL.505: P Command input pu	lse exception	
Fault alarm reason	Fault alarm check	The disposal measures
The pulse command	The pulse frequency meter is	Set the input pulse frequency
frequency is higher than the	used to detect whether the	correctly

rated input frequency	input frequency is higher than	
	the rated input frequency	

AL.610: Incremental decoder offline

Fault alarm reason	Fault alarm check	The disposal measures
Incremental encoder HallU,	Check the encoder wiring	correct wiring
HallV, HallW signal anomaly		

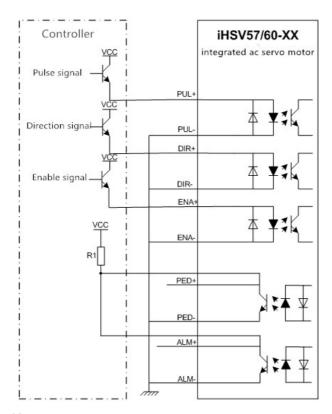

AL943: 6/5000

Serial communication exception

Fault alarm reason	Fault alarm check	The disposal measures	
Serial communication	Check the wiring Add a filter to the wi		
interference	Check the baud rate	Reduce the baud rate of seria	
The baud rate of serial port is	parameter p00-21 for serial	communication	
set too high	communication		

7. Control signal connection

7.1 Control signal single terminal common anode connection

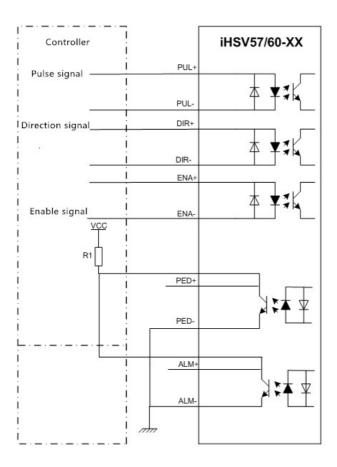


Note:

VCC is compatible with 5V~24V.

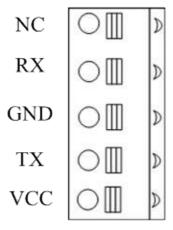
The resistance R1 is connected to the control signal terminal, and the resistance value is 3~5K.

7.2 Control signal single terminal common cathode connection



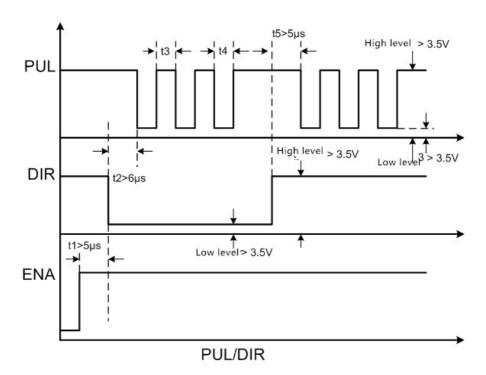
Note:

VCC is compatible with 5V~24V.


The resistance R1 is connected to the control signal terminal, and the resistance value is 3~5K.

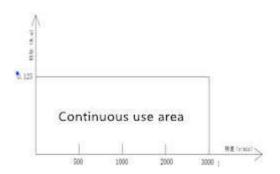
7.3 Control signal differential connection mode

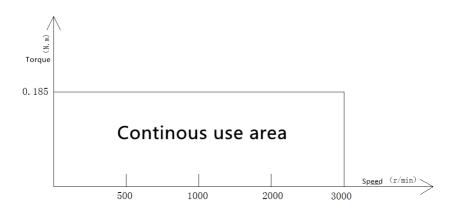
Note: VCC is compatible with 5V~24V. The resistance R1 is connected to the control signal terminal, and the resistance value is 3~5K.


7.4 232 Serial communication wiring diagram

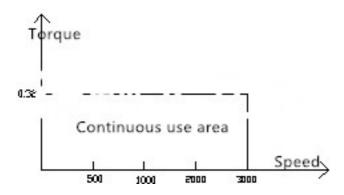
Definition	Description	Color connection for 232 serial communication lines
NC	hang in the air	
RX	receiving end	Brown and white
GND	Power-	Blue
TX	The sender	Blue and white
VCC	Power +	

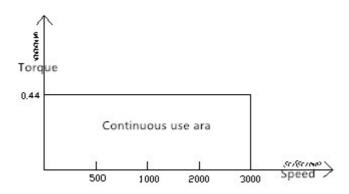
7.5 Control signal sequence diagram

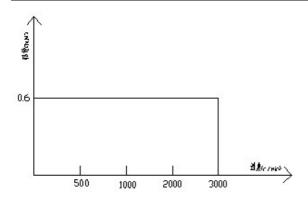

In order to avoid some wrong actions and deviations, PUL, DIR and ENA should meet certain requirements, as shown in the figure below:


Remark:

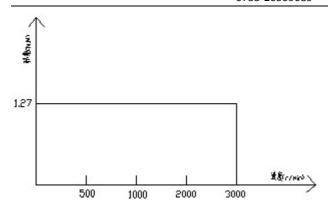
- (1) t1: ENA (enabling signal) should be at least 5 chi ahead of time, which is determined to be high. It is generally recommended that ENA+ and ENA- be suspended.
- (2) t2: DIR at least predates the PUL count edge 6, indicating that the state is high or low.
- (3) t3: the pulse width shall not be less than 2.5 clear s.
- (4) t4: the width of low level is not less than 2.5 clear s.

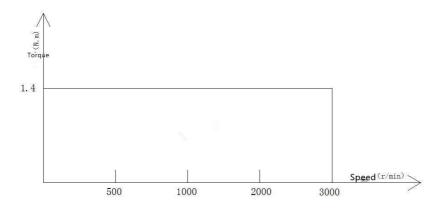

7.6 Servo motor speed torque characteristic curve

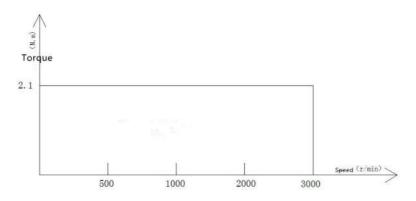

iHSV42-40-05-24-XXX4/5000 Torque characteristics


iHSV42-40-07-24-XXX4/5000 Torque characteristics


iHSV57-30-10-36-XXX4/5000 Torque characteristics


iHSV57-30-14-36-XXX4/5000 Torque characteristics


iHSV57-30-18-36-XXX4/5000 Torque characteristics


iHSV60-30-20-36-XXX4/5000 Torque characteristics

iHSV60-30-40-48-XXX4/5000 Torque characteristics

iHSV86-30-44-48-XXX4/5000 Torque characteristics

iHSV86-30-66-72-XXX4/5000 Torque characteristics

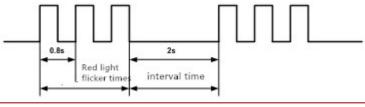
8. Setting of dial code for subdivision

8.1Subdivision Settings

The subdivision Settings are as follows: when SW1, SW2, SW3 and SW4 are all set as on, the user's customized subdivision is effective, and this value can be set by our company's servo software.

Drawing codes				
switch	SW1	SW2	SW3	SW4
Subdivision				
Default	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off

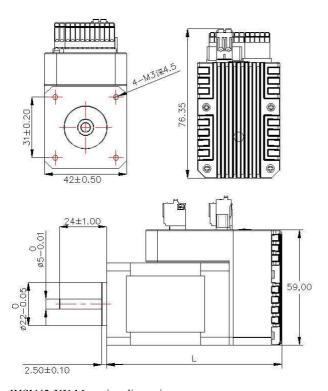
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off


8.2 Input edge Settings

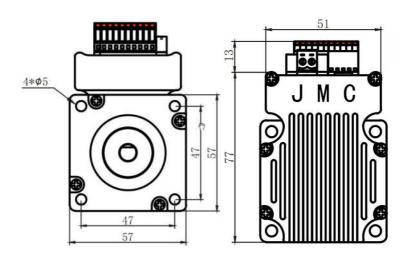
SW5 dial code switch sets input edge, off means rising edge and on means falling edge.

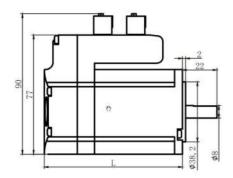
8.3 Logical direction setting

When SW6 dial code switch off or on, the direction of current motor motion can be changed, off = CCW (forward), on=CW (reverse).

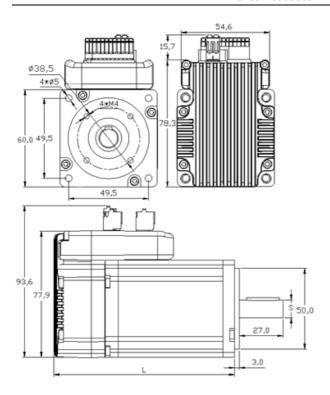

9. Error alarm and LED flashing frequency

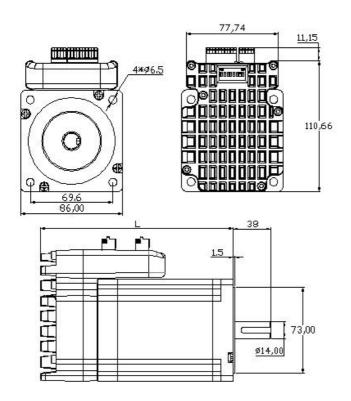
Number of red light	Alarm Description	Treatment measures
flashes		
2	Driver overcurrent	Is there a short circuit in the motor
		UVW line
3	Drive position deviation	Check if driver "deviation in place"
	exceeds set value	parameter is set correctly
4	Drive encoder alarm	Check whether the encoder wire is
		properly connected
7	Driver overload	Check whether the motor UVW wire
		is connected correctly


10. Installation Dimensions


Mounting dimensions (unit: mm)

IHSV42-XX Mounting dimensions


Model	Length L (mm)	shaft (mm)
iHSV42-40-05-24-XXX	84	24
iHSV42-40-07-24-XXX	110	24


iHSV57-XX Mounting dimensions

Model No.	Length L (mm)	shaft (mm)
iHSV57-30-10-36-01-T-33-XXX	110	
iHSV57-30-14-36-01-T-33-XXX	130	33
iHSV57-30-18-36-01-T-33-XXX	150	

iHSV60-XX Mounting dimensions

Model No.	Length L (mm)	diameter of Shaft S(mm)	Shaft length (mm)
iHSV60-30-20-36-XXX	110	11	
iHSV60-30-20-36-03-XXX	130	14	30
iHSV60-30-40-36-XXX	110	14	

iHSV86-XX Mounting dimensions

Model	Lenght L (mm)	Shaft (mm)
iHSV86-30-44-48-XXX	162	38
iHSV86-30-66-72-XXX	189	

11, RFQ and analysis

11.1 Power lamp is not on

Check whether the power supply has input and whether the line connection is correct.

Whether the input voltage is too low.

High input voltage will burn out the servo drive motor.

11.2 power on the red light to alarm

Whether the input voltage of servo drive motor is too high or too low.

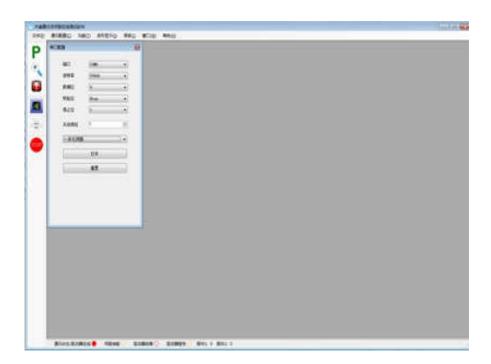
Whether the servo drive motor has pulse input all the time before power on, resulting in overshoot alarm.

11.3 Run a small Angle of rotation after the red light alarm

In the configuration parameters of the servo drive motor, whether the pole logarithm of the motor and the number of lines of the encoder are matched (the pole logarithm is: 4, and the number of lines of the encoder is: 1000).

If the pulse input speed is greater than the motor's rated speed, the position is out of tolerance.

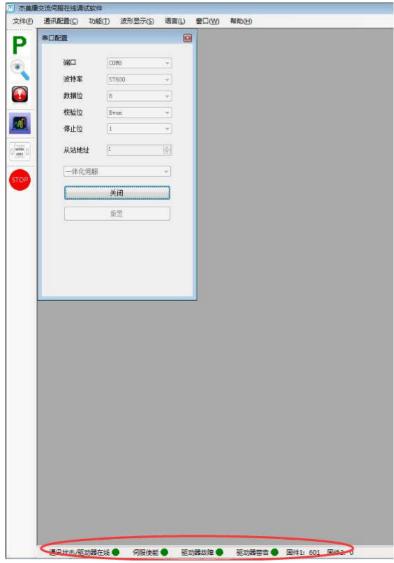
11.4 the pulse does not rotate after input


Whether the connection of the pulse input terminal of the servo drive motor is reliable.

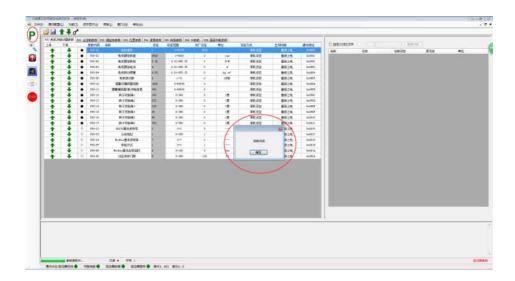
Whether the servo drive motor can be released, whether the energy signal has input.

The electronic gear ratio is too large.

12, iHSV42/57/60/86-XX Parameter modification steps


1 Choose JmcServoPcControl Servo adjust software, Double-click to open the following image:

2. In the popup dialog box, set the corresponding options and open at the point, as shown below:



3. If the communication is successful, the following figure shows:

Note: If the connection is not available, please confirm whether COM port is selected correctly, whether the communication line is connected properly, and then reconnect according to the above steps. **Click the upper left option**

, Then pop up the following window, then the internal parameters of the driver will be uploaded automatically. After uploading, customers can change the parameters according to their needs.

Note: P00-xx is parameters of the motor and drive. The factory has been set up, and will not be changed by customers.

The following three steps are taken as follows: modify, download, upload, as shown in the following figure:

Note: After setting the corresponding parameters in the settings, download the changed parameters to the driver according to the download option, and then upload the parameters to the interface to verify whether the parameters have changed.